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Pinning of fluid membranes by periodic harmonic potentials

N. Gov and S. A. Safran
Department of Materials and Interfaces, The Weizmann Institute of Science, P.O. Box 26, Rehovot, Israel 76100

~Received 27 May 2003; published 13 January 2004!

We analyze the thermal fluctuations of fluid membranes in the presence of periodic confining harmonic
potentials. This is a simple model of the biologically important, inhomogeneous attachment of the cytoskeleton
to the external, fluid membrane of the cell. We study a two-dimensional checkerboard potential as well as
one-dimensional, sinusoidal and periodic highly localized,d function potentials. The membranes are described
by an energy functional that includes the curvature bending modulus of the membrane and the harmonic
external potential. We predict the magnitude of the membrane shape fluctuations. The sinusoidal potentials give
a spontaneous surface tension, and an emergent intermediate-range order in the membrane undulations. Thed
function potentials induce a renormalization of the curvature modulus, with perfect pinning at thed potential
sites. After spatial averaging, thed-function potentials also give rise to an effective surface tension. Finally, we
compare these results with measurements of the fluctuations of the red-blood cell membrane, which shows the
effects of cytoskeleton attachment to the cellular membrane.

DOI: 10.1103/PhysRevE.69.011101 PACS number~s!: 05.40.2a, 05.65.1b
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I. INTRODUCTION

The coupling between the elastic cytoskeleton and
fluid, lipid membrane is important for understanding the m
chanical properties and fluctuation spectrum of the cell. T
details of the cytoskeleton components and its geometry v
between cells, but there are general features that are com
to all: the fluid bilayer is attached to the cytoskeleton throu
specialized membrane proteins, confined to small attachm
patches of;10–50 nm each, which can be relatively spa
„;100 nm apart in the red-blood cell~RBC! @1#, Fig. 1…. The
cytoskeleton itself is usually much stiffer than the bilay
and its solidlike structure gives it a shear modulus. The p
of the bilayer that is attached to the cytoskeleton is there
highly confined with respect to fluctuations in the normal a
lateral directions. It is interesting to see how this highly
homogeneous confinement affects the entire membrane
cluding those sections that are not directly attached to
cytoskeleton.

In this paper we focus on the effects of the inhomog
neous confinement on the thermal fluctuations of the m
brane. These fluctuations have been measured in RBC’s@2#,
and the effective membrane bending modulusk was found to
vary dramatically as a function of the measurement w
vector q. These observations, as well as the temporal sp
trum @3#, have presented a theoretical challenge since t
appear to indicate that the bilayer behaves as if it is alm
detached from the underlying cytoskeleton@4,5#. In our pre-
vious work @5# we have introduced a phenomenologic
model that describes the cytoskeleton influence on the
layer fluctuations in terms of a uniform harmonic confin
ment ~described by the parameterg). At the same time, the
membrane appears to acquire a wavelength-dependent
face tension stiffness, in addition to its curvature modu
@5,19#. This tension is much larger than estimated from
finite size effect@6# s@k/R2. The aim of the present work i
to calculate rigorously the effects of the nonuniform coupli
of the cytoskeleton to the bilayer~Fig. 1!, on the bilayer
thermal fluctuations. Using this calculation we obtain a m
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e
-
e
ry
on

h
nt

e

,
rt
re
d
-
in-
e

-
-

e
c-
y

st

l
i-

-

ur-
s
e

-

croscopic justification for the phenomenological model
Ref. @5#, and the confinement and surface tension parame
g ands, respectively. In the present work we predict the
properties using a simple, well controlled model. Our a
here, therefore, is not necessarily to improve on the qua
of the fit that was already obtained in Ref.@5#, but to moti-
vate the use of the phenomenological parameters and to
late them to the microscopic nature of the cytoskelet
bilayer coupling, with particular focus on its inhomogeneo
sparse structure.

Our simplified model approximates the membran
cytoskeleton coupling as a confining harmonic potent
placed periodically along the membrane. The point of atta
ment of the cytoskeletal spectrin network to the membran
through relatively short and rigid protein complexes@1# ~p.
4.1, p. 55, etc!. It is the flexible spectrin filaments that pro
vide the smooth restoring force of the cytoskeleton on
membrane, which can be treated harmonically. The spec
molecules behave as linear entropic springs, with nonline
ity at large extensions@7#, beyond the range of the therma
fluctuations which we discuss here~Fig. 1!. We study two
extreme modes of the lateral potential: a series ofd func-
tions, and a smooth sinusoidal function. For both cases
find analytical solutions for a one-dimensional membra

FIG. 1. Schematic illustration of the components of the RB
membrane and cytoskeleton. Not shown are the additional con
tions between the spectrin filaments~gray ribbons! and the lipid
bilayer ~dashed filled rectangle! through randomly placed ankryn
complexes, which do not modify the network connectivity. The fl
bilayer drawn is where the plane of zero displacementh50 is de-
fined.
©2004 The American Physical Society01-1
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and for the sinusoid we also calculate the fluctuations for
two-dimensional case.

The qualitative effects of the inhomogeneous confinem
are the spontaneous appearance of a surface tension, wh
significantly larger than that given by the finite size effe
and a uniform confinement term. For the case of a w
sinusoidal confinement we also find enhanced correlation
a characteristic length scale, due to ‘‘interference’’ effect
neighboring confinement peaks. This occurs when the pe
tence length of the membrane is larger than the harmo
potential periodicity.

We finally compare the results of our model calculatio
with the measurements of the fluctuations of the RBC me
brane. This membrane is attached to a two-dimensio
~roughly! triangular cytoskeleton—the spectrin network@1#
~Fig. 1!. We find that our calculation can reproduce the eff
of the uniform confinement and the appearance of an ef
tive surface tension, as found in the experiments. Previo
@5# these parameters were fitted individually from the expe
mental data. Through the present calculation these par
eters can be related to the microscopic properties of the
toskeleton; the periodicity of the connections and
strength of the attachments~see Sec. III for details, Fig. 1!.

II. MODEL

In this work we use the connection between thermal
erages and fluctuations, to calculate the effect of a perio
confining potential on the shape fluctuations of a membra

We begin with the definition of the thermal average of t
normal displacementh of the membrane at sitei @6#,

^hi&5
1

ZE dLe2H/kBThi , ~1!

where the partition functionZ5*dLe2H/T and dL is the
phase-space integral. The HamiltonianH of the membrane is
given by

H5E k

2
~¹2h!2dr1

1

2E V~r 2r 8!h~r !h~r 8!dr dr8,

~2!

wherek is the bending modulus andV(r 2r 8) is the external
potential that represents the inhomogeneous coupling to
cytoskeleton. For a locally acting, harmonic confining pote
tial, the second term in Eq.~2! becomesV(r )h(r )2. To cal-
culate the correlations, we can introduce a fictitious fieldf to
the free energy@6#, which couples linearly to the norma
displacement~linear response approximation!. This adds the
following term to the Hamiltonian

H f5H2E f d~r !h~r !dr. ~3!

Taking the derivatives with respect tof, we find that the
height-height correlation is@6#
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^@h~0!2^h~0!&#h~r !2^h~r !&#&52kBT
]^h~r !&

] f U
f 50

.

~4!

where ^h(r )&[x(r ) is the average membrane deviation
the presence of the fieldf ~being zero otherwise!. In a mean-
field type of approximation, this average is the solution to
energy minimization~Euler-Lagrange! equation

]H f

]h
50⇒V~r !x~r !1k¹4x~r !5 f d~r !, ~5!

where x(r )5^h(r )& is the mean-field value of the norma
displacement of the membrane.

This model therefore describes a membrane that is fre
fluctuate around its average positionh50 ~Fig. 1!. The har-
monic confinement acts symmetrically on the membra
even though the physical cytoskeleton is attached to only
side of the lipid membrane. The asymmetry in the real me
brane fluctuations becomes important only for large fluct
tions where the membrane ‘‘hits’’ the spectrin filaments a
makes the network break or buckle. These large defor
tions are beyond the range of this linear model. We furt
note that one should average over the location of the fi
tious fieldf with respect to the harmonic potentials. The re
son for this is that experiments on real membranes@2# lack
the resolution to distinguish between the bilayer regions t
are attached to the underlying cytoskeleton. Furthermore,
membranes are fluid, so that the cytoskeleton-bilayer c
pling sites fluctuate in the plane of the membrane. Theref
after calculating the correlation functions, we average o
the positions of the harmonic potentials, keeping the locat
of the field f at the origin.

The Fourier transform of the energy minimization equ
tion is

(
G

VGxq2G1kq4xq5 f . ~6!

Sincexq is linear inf, we see from Eq.~4! thatxq is simply
proportional to the Fourier transform of the two-point corr
lation function. For a free membrane (VG50), we have
from Eq. ~6! xq5 f /kq4. Transforming this back to rea
~two-dimensional! space we recover in the limit of a larg
membrane of sizeL ~the complete result is in Appendix A!
the well-known self-correlation~in the limit r→0)

^h~0!h~r→0!&.
kBTL2

4pk
. ~7!

For any external potential it is possible to solve Eq.~6!
numerically. In order to obtain analytic expressions, we w
make a series of simplifications and approximations, la
comparing the results with the numerical solutions.

In the presence of a uniform external potentialV ~where
only VG50 is nonzero! the solution takes the following form
~5!:
1-2
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xq5
f

g1kq4
, ~8!

where g5VG50. Transforming Eq.~8! back to real~two-
dimensional! space we find for the self-correlation

^h~0!h~0!&5
kBT

8Akg
~9!

which shows clearly the effect of uniform confinement, co
pared to the free membrane result~7!.

III. SINUSOIDAL POTENTIAL

The differential equation~6!, for a periodic potential char
acterized by a single wave vector6G (GÞ0), gives an
infinite series of algebraic equations@8#. In analogy with the
solution of the electronic wave equation in a periodic pot
tial @8#, we approximate the infinite series of algebraic eq
tions ~6! by keeping only the first-order terms inG. Since we
expect~and later find! the amplitudexq to decay with in-
creasingq, we expand up to first order inG, i.e.,G@q. This
amounts to the assumption that only the first-order scatte
of the membrane undulations by the periodic potential c
tributes significantly.

We now calculatexq for a two-dimensional checkerboar
potential of the form V(x,y)5V11V0cos(Gx)cos(Gy),
where the sinusoidal harmonic potential of amplitudeV0 is
superimposed on the uniform background of amplitudeV1
>V0. This potential should physically resemble the confi
ing of the sparse network of the RBC cytoskeleton~see the
following section!. We therefore write

@V11k~qx
21qy

2!2#xq1
V0

4
eidxeidyxG1qx ,G1qy

1
V0

4
e2 idxeidyx2G1qx ,G1qy

1
V0

4
eidxe2 idyxG1qx ,2G1qy

1
V0

4
e2 idxe2 idyx2G1qx ,2G1qy

5 f ,

V0

4
e2 idxe2 idyxq1$V11k@~G1qx!

21~G1qy!2#2%

3xG1qx ,G1qy
5 f ,

V0

4
eidxe2 idyxq1$V11k@~2G1qx!

21~G1qy!2#2%

3x2G1qx ,G1qy
5 f ,
01110
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V0

4
e2 idxeidyxq1$V11k@~G1qx!

21~2G1qy!2#2%

3xG1qx ,2G1qy
5 f ,

V0

4
eidxeidyxq1$V11k@~2G1qx!

21~2G1qy!2#2%

3x2G1qx ,2G1qy
5 f . ~10!

The shifts of the sinusoidal functions with respect to t
origin ~where the forcef is applied! 0,dx ,dy,2p are av-
eraged over at the end of the calculation, since we are in
ested in the translationally invariant response~this procedure
does not make any qualitative changes!. We solve Eqs.~10!
exactly, that is,xq for the two-dimensional checkerboard p
tential. Since the resulting expressions are long, it is m
manageable to look at the behavior along one particular
rection. We give in Appendix A the result forxqx

~a cut along

qy50), while for simplicity we takeV15V0 @Eq. A3#.
We next compare the solution of the analytical calculat

@Eqs. ~10! and ~A3!# with a numerical solution of up to
fourth order~i.e., 64G). The average discrepancy is62%
for V05kG4, which grows to;10% for V0510kG4. The
analytical results are therefore less accurate for larger
monic potentials, or smallG. Indeed, we assumed in derivin
Eq. ~10! that G is large enough so that only the neare
neighbors inq space need to be taken into account.

Expanding Eq.~A3! up to fourth order inq we can define
the effective bending modulusk̄, surface tensions̄, and the
uniform ~‘‘Helfrich’’ ! confinement parameterḡ ~A4!, as the
coefficients ofq4, q2, andq0, respectively, in the expressio
for xq

21 . We plot these quantities in Fig. 2 as functions of t
ratio V0 /G4k. Note the spontaneous appearance of a surf
tension term@9#.

FIG. 2. Analytic expressions for the effectivek̄/k ~dashed line!,
s̄/(kG2) ~dotted line!, ḡ/V0 ~solid line!, Eq. ~A4!, for the check-
erboard potential. The horizontal dashed line at 5/4 shows the l
of k̄/k for V0→`.
1-3
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We find that these quantities~A4! have the following be-
havior in the limit of both weak (e215V0 /G4k!1) and
strong (e215V0 /G4k@1) confinement:

V0→0:ḡ→V0 , s̄→2
V0

2

8G6k
, k̄→k,

V0→`:ḡ→ 3V0

4
, s̄→2kG2, k̄→ 5

4
k. ~11!

For weak confinement, both the curvature modulus and
uniform confinementg are easily understood; however w
find a surprising effectivenegativesurface tension for weak
potentialsV0,4kG4. In the limit of strong confinement we
find that the surface tension saturates to a positive value
is much larger than the tension due to finite size effects, w
a renormalized bending modulus and monotonically incre
ing uniform confinement~Fig. 2!.

In both cases it is the ‘‘pulling’’ effect of the inhomoge
neous pinning that induces the appearance of the effec
surface tension. In the limitV0→`, the clamping has a simi
lar effect to positives that tends to reduce the fluctuation
In the limit V0→0, there appears a characteristic wave v
tor q0 ~see below!, which is similar to the effect of buckling
that a negative tension would induce.

The renormalization of the bending modulus to a value
5/4k ~11! is somewhat similar to the effects calculated f
membranes with grafted polymers and brushes@10#, where
factors of 3/2–5/2 have been found. The similarity is cle
as the grafted molecules apply a smooth entropic constr
on the membrane fluctuations, similar to the harmonic pot
tial that we are applying here.

The effective negative surface tension for smallV0
~Fig. 2! means that there is a peak in the correlation funct
xq ~A3!, at some finite wave vectorq0. The appearance of
typical wavevector, even after averaging over the sinuso
potential position, is surprising. Using the expansion ofxq
up to fourth order inq, we find an approximate expressio
for this wavevectorq0 ~Eq. ~A5! in Appendix A!

q05H G~V0/4G4k!, V0→0

~Vc2V0!1/2

A34kG
, Vc2V0→0,

~12!

whereVc54kG4. In Fig. 3 we plot this function. There is n
real solution forV0.Vc , which corresponds to the regime o
positive surface tensions̄ ~Fig. 2!. For s̄.0 the correlation
function decreases monotonically asq increases from zero.

The appearance of a peak in the displacement correla
function ~4!, at a finite wave vectorq0, means that there is
characteristic wavelength for the thermal fluctuations. A
vergence in the correlation function would correspond
long-range order at that wavelength, while a finite peak c
responds to domains with an intermediate-range order,
enhanced correlations at the lengthscale 1/q0. In our case,
the domain structure corresponds to regions with vary
amplitude of thermal fluctuations. We see in Fig. 3 that
wavelength of these ‘‘fluctuations domains,’’ at its minimum
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is approximately six times the periodicity of the harmon
potential. Note from Eq.~12! thatq0 is given in terms of the
scaling functionG f(V0 /kG4), since G is the only length
scale, andV0 /kG4 is the ratio of the two energy scales in th
model.

For small harmonic potentials, the domain wave vecto
linear in the potential~A5! q0→G(V0/4G4k) ~Fig. 3!. This
linear regime bears some resemblance to the intermed
range order in crystalline~or tethered! membranes above th
disclination melting temperature@11#. In such tethered mem
branes, there is crystalline order over length scales sma
than r c;k/mb, wherem is the shear modulus of the mem
brane andb is the length scale of a dislocation. In oth
words, tethered membranes have enhanced correlation
length scales less thanr c , behaving as an isotropic liquid a
longer length scales. If the shear modulus of such a m
brane is written in terms of our confining harmonic potent
~see the following section! as m;V0 /G2, andb;1/G, we
recoverr c.1/q0. This is the length scale at which the ben
ing ~of the bilayer! and stretching~of the tethers! energies
balance each other in such membranes. Similarly in
model the periodic potential induces stretching of the me
brane, which can be balanced by the bending energy fo
r ,r c . The balancing of the two opposing forces of stretc
ing and bending, at the wave vectorq0, allows the mem-
brane fluctuations~and correlations! to be enhanced there.

Experimental evidence for enhanced membrane defor
tions on such length scales is seen in freeze fracture elec
micrograph of a RBC membrane@12#. Small undulations
with wavelengths of;100 nm are seen, which is of the o
der of the distance between neighboring cytoskeleton-bila
coupling sites, corresponding to ourG. A phase with a simi-
lar finite ~nondivergent! peak in the correlations at a finit
wave vector, but with no long-range order or instabili
~which are both associated with divergent correlations!, is
seen in microemulsions@13#. In these systems a random

FIG. 3. The approximate analytic expression for the wave vec
q0 @Eq. ~A5!# where a peak appears in the correlation functionxq ,
for the two-dimensional checkerboard potential. In the inset
compare the analytic and numerical calculation for the o
dimensional sinusoidal potential.
1-4
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sponge phase exhibits a characteristic length scale for
size of the water-oil domains. Negative surface tension
general can lead to a divergence in the amplitude of ther
fluctuations at someq. In our system the negative surfac
tension does not lead to a real instability since in the acc
sible region ofq space, there are always the positive curv
ture kq4 and confinementg terms in the Hamiltonian~2!,
which keep the membrane area fluctuations finite.

We thus find an interplay between three length sca
characterized byq0 , G, and qc5(g/k)1/4. The disappear-
ance of the spontaneous structure in the fluctuation spect
for large V0, can be qualitatively understood as follow
WhenV0 is large enough, the persistence length of the me
brane;1/qc is smaller than the harmonic potential perio
icity. In this case, the confining effect of each harmonic p
tential peak is effectively decoupled from its neighbor, a
there is no emergent intermediate-range order, with len
scale 1/q0. In other words, theV0→` limit ‘‘breaks’’ the
membrane, so that no significant coherence remains on
scale ofG21.

We can also compare our results to those of the crump
transition in phantom crystalline~or tethered! membranes
@14#, without self-avoidance. In these studies a continu
transition was found from a flat to a crumpled phase, as
surface tension changes from negative to positive. We
similarly that as the surface tension changes from negativ
positive, the wave vectorq0 at which there is a peak in th
correlation function vanishes. The ‘‘crumpled’’ phase in o
case corresponds toq050, which means that the membran
conforms to the applied harmonic potential, after averag
For tethered membranes this corresponds to the reg
where the tethering is strong enough to cause crumpling.
‘‘flat’’ phase corresponds in our case to the regime where
persistence length of the membrane is longer than the p
odicity of the applied potential, so that an intermediate-ran
order at a finiteq0.0 appears. We find that within our ap
proximation~12! q0}As asV0→Vc ~Fig. 3!, as was found
for the phantom membranes, when the critical point of
crumpling transition is approached from the flat phase@14#.

IV. CYTOSKELETON OF THE RBC

We now wish to compare the results of our model to
experimentally well studied case of the RBC~Fig. 1!. The
cytoskeleton of the RBC is a two-dimensional~roughly! tri-
angular network made up of flexible spectrin molecules,
tached at their ends to actin complexes, and through the
the lipid bilayer@1#. The length of the spectrin connection
of the network is;100 nm, while the size of the region
coupling the cytoskeleton to the bilayer is;10 nm@1#, thus
forming a sparse~dilute! confinement~Fig. 1!. The spectrins
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are further attached to the membrane at random sites a
their length by ankryn molecules. The spectrins behave
entropic springs and give the cytoskeleton a shear mod
of m;631026 J/m2 @15#.

We have previously@5# analyzed the measured spectru
of the thermal fluctuations of the RBC membrane@16#, and
found phenomenologically that it can be described using
three parametersk,s,g as in Eq.~A3!. In the present work
we compare these phenomenological parameters with th
sults of our microscopic model~11!, which highlights the
effects of the inhomogeneous coupling of the cytoskeleton
the lipid membrane. Through the results of our model of
preceding section, these parameters, namelyḡ,s̄,k̄, are
shown to be related to the physical properties of the cyto
eleton, namelyG,V0.

We find the values ofG,V0 which give ḡ.gex and k̄
.kex;2310220 J ~Fig. 4!, and are given in Table I~for the
two extreme examples of measured RBC’s!. Note that the
approach to the asymptotic valuek̄55k/4 is very slow
~Figs. 2 and 4!.

We find in both cases that the predicted surface tensios̄
is smaller than the measured valuesex by a factor of;3
~Table I and Fig. 4!. The calculated surface tension is close
the asymptotic value of strong confinements̄;2kG2 ~11!.
Note also that this value is;m/30, but is still much larger
~two orders of magnitude! than the surface tension arisin
from area conservation of the RBC@5#: s05k/R2;1
31029 J/m2 ~takingR;4 mm for the RBC radius!. The fac-

FIG. 4. The calculated elastic parametersḡ,k̄, ands̄ as a func-
tion of the potentialV0, for G51/380 nm21. We normalize the
parameters by the measured valuesgex ,kex , andsex , respectively,
for the first RBC of Table I. It is clear that bothḡ and k̄ approxi-
mately agree with the measured values atV0;108 J/m4, while s̄ at
most approaches;sex/3.
TABLE I. Values ofG, V0 which give ḡ.gex and k̄.kex;2310220 J.

V03108 (J/m4) G(nm21) e215V0 /kG4 G/qc gex3107 (J/m4) sex31027 (J/m2)

1 1/380 104 2.5 7.5 7
0.13 1/650 116 3 1 2.8
1-5
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tor of 3 discrepancy can be attributed to the fact that
chose a particularly simple model with a single sine wa
modulation, withV05V1. Note in Table I that the measure
ments on two different cells also differ by about a factor of

The significant result is that the cytoskeleton-induced t
sion is two orders of magnitude larger than the tension du
area conservation. The surface tension imposed by the
odic potential is therefore distinct from both the cytoskele
shear strength and the area conservation condition.

We now relate the values ofG andV0 to the microscopic
structure of the RBC cytoskeleton. The calculated periodic
of the sinusoidal potential in Table I is of the order of t
observed average distance between cytoskeleton-bilayer
nection sites@2# (;150 nm). Additionally, the values of th
peak confining harmonic potential exerted by the cytosk
eton V0;100kG4 can be related to the shear strength p
unit area of the cytoskeletonm: V0;mG2.(0.14–0.4)
3108 (J/m4). The strength of the confining potential that th
cytoskeleton exerts on the lipid membrane at the coup
site is related to the cytoskeleton stiffness. This is so beca
it is only the local shape changes of the cytoskeleton
provide a restoring force to the fluctuations of the lipid me
brane, above and beyond its intrinsic bending modulusk
~Fig. 1!. The relatively large difference between the two ce
above can be due to natural variations in the structural p
erties of the cytoskeleton. For example, the density of ank
may vary@17#, and with it the entropic stiffness of the spe
trin network.

We now compare the behavior at all wave vectors. In F
5 we compare the observed and the calculated effec

FIG. 5. Comparison of the calculatedkq51/(q4xq) for the two-
dimensional checkerboard potential, Eq.~A3! ~taking
V15V0)—solid lines; a one-dimensional sinusoidal potential@Eq.
~A9!#—dash-dot lines and measured~symbols! for the two RBC’s
of Table I. The two fitting parameters areG andV0. The simple fit
without surface tension~only average confinementg) is shown as
dashed lines, while the wave vectorqc;(g/k)1/4 is indicated by the
vertical dashed lines. The inset shows the data for one of the c
so that the importance of the large effective surface tension foq
&qc is apparant. The calculated surface tensions̄ is seen to be
smaller than the experimentally measured valuesex ~dotted line!.
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bending moduluskq[1/(q4xq), using Eq.~A3! with V1
5V0. We find that both the two-dimensional model with
checkerboard potential and the one-dimensional sinuso
potential can reproduce fairly well the lowq behavior, in-
cluding the appearance of the relatively large effective s
face tension. The measured data, though, show a more ab
change around the crossover wave vectorqc ~vertical dashed
lines in Fig. 5! @18,19#. This is likely due to the more discret
nature of the cytoskeleton-bilayer coupling, which is not ca
tured by the smooth sinusoidal potential. The comparis
between the one-dimensional and two-dimensional calc
tion emphasizes the dependence of the emergent elastic
rametersk,s, and g on the details of the symmetry an
geometry of the harmonic potential, which in the RBC ha
mixed hexagonal-pentagonal symmetry. Note that the imp
tance of the induced surface tension is apparent only
wave vectors smaller than the crossoverq&qc ~Inset of Fig.
5!. We see again that the calculated surface tensions̄ is too
small (;sex/3).

Although the coupling of the cytoskeleton to the mem
brane occurs at distinct sites~Fig. 1!, the checkerboard
model gives a surprisingly good approximation of the re
cytoskeleton-bilayer coupling in the RBC, because of
fluctuations of these coupling points. Looking at a schema
picture of the membrane, we can see that the cytoskele
strongly confines the bilayer over an actin patch of;30 nm
in diameter~Fig. 1!. The spectrin molecules, which form th
links of the cytoskeleton network, emanate from such
patch. The bilayer-spectrin separation therefore increase
dially as one moves away from the connecting patch, wit
gradual consequent decrease in the confining strength@20#.
In addition, the position of the connecting patch therma
fluctuates in the liquid bilayer@21#, with an observed ampli-
tude of;20 nm. This further smooths the effective confin
ment of the bilayer by the cytoskeleton, and explains why
effective periodicity we find by fitting to our model@Table I#
is larger than the static periodicity.

V. PERIODIC d POTENTIALS

In this section we examine the case of a highly localiz
cytoskeleton-bilayer coupling, in the form of a periodic s
ries ofd functions. This corresponds to the opposite limit
the smooth sinusoidal variation examined above. Physic
this scenario corresponds to a rigid and stiff cytoskelet
highly separated from the bilayer, except at the points
contact.

To obtain analytic solutions we limit ourselves to the on
dimensional case, which we compare with a similar calcu
tion of the sinusoidal variation~end of Appendix A!. In one
dimension Eq.~5! becomes

V(
m

@d„x2a~m21!…1d~x2am!#x~x!1k
]4x~x!

]x4

5 f d~x! ~13!

with the d functions at positionsx5am and strengthV in
units of J/m3). We parametrize the solution for each secti

ls,
1-6
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of coordinatea(m21)<x<am by the exact solution of Eq
~13! in the regions between each of thed functions:

xm~x!5am1bmx81gmx821emx83, ~14!

wherex85x2(m21)a. We then write the boundary cond
tions for each section, which are the continuity conditions
the functionsx,]x/]x,]2x/]x2:

gm2gm2153aem21 ,

bm2bm2152agm2113a2em21 ,

am2am215abm211a2gm211a3em21 . ~15!

The fourth equation we need is given by the integration
Eq. ~13!

em2em2152
V

6k
am1

f

6k
dm,1 , ~16!

where the last term accounts for the applied force at
origin.

We now perform a discrete Fourier transform of the
equations, and solve Eq.~B1!, to find aq ,bq ,gq ,eq ~Appen-
dix B!. Using the solution of Eq.~B1! in Eq. ~B2! ~Appendix
B! we finally find

xq5
f

kq41g
,

g5
16a3q4V@21cos~aq!#sin~aq/2!4

3u211eiaqu8
, ~17!

which for smallq has the form

g.
V

a
1

a3V

720
q4 ~18!
an

h

ex

01110
r

f

e

e

and amounts to a uniform confinement combined with
renormalization of the curvature bending modulus. Note
absence of a surface tension term in this case, in contra
the sinusoidal potential~A11!. As expected, the infinitely
strong coupling at the positions of thed functions introduces
zero response at the corresponding wave vectorsq52pn/a
(n50,1,2. . . ), whereg→` ~Fig. 6!.

To take into account the averaging over the relative po
tion of thed-function harmonic potentials and the origin, th
potentialV in Eq. ~17! gets multiplied by a phase factoreidq,
with 2a,d,a. Integrating over this phase,

FIG. 6. The calculated correlation functionxq ~solid line! for a
one-dimensional periodic array of harmonicd functions@Eq. ~17!#
and for the position-averaged case@Eq. ~19!, dashed line#. In the
inset we plot these functions for largerq values, compared with the
approximate expression~18! ~dotted line!. Note that the spatial av-
eraging of the potential removes the oscillations.
xq5
f

2akq5 S aq12 arctanF $3ku211eiaqu82a3V@829 cos~aq!1cos~3aq!#%tan~aq/2!

3ku211eiaqu8116a3V@21cos~aq!#sin~aq/2!4 G D ~19!
idal
-

the
ly

the
and expanding in the limit of small wavevector,

f xq
21.

V

a
1

aVq2

6
1S k1

Va3

48 Dq4. ~20!

We find that the averaging process leads to the appear
of a positive surface tension termsd.aV/6, while the nodes
in the correlation function disappear~Fig. 6!. Comparing
with the previous sections, we find thatsd;m(aG)2/6, so
that the calculated surface tension can be related to the s
modulus of the cytoskeletonm, but is smaller by about an
order of magnitude. Notice the difference between the
ce

ear

-

pressions for the surface tension in the case of a sinuso
potential@Eq. ~11!# andsd . In particular, there is no depen
dence on the curvature bending modulusk in the latter case.
The dependence on the confining potentialV is quadratic in
the former, while it is linear in the case of periodicd poten-
tials.

As we discussed in the end of the preceding section,
actual confining potential in the RBC is most probab
smooth, rather than ad-function-like potential. This is de-
spite the fact that the cytoskeleton is strongly attached to
membrane at confined sites~Fig. 1!. The position of these
patches thermally fluctuates in the liquid bilayer@21#, with
1-7
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N. GOV AND S. A. SAFRAN PHYSICAL REVIEW E69, 011101 ~2004!
an observed amplitude of;20 nm. This smooths the effec
tive confinement interaction of the bilayer and the cytosk
eton.

VI. CONCLUSIONS

In this work we described analytical and numerical resu
for models of inhomogeneous~periodic! harmonic confine-
ments of fluid membranes. These models are applied to
periments that are sensitive to the physical coupling betw
the cellular cytoskeleton and outer lipid membrane. Our
sults show that a smooth inhomogeneous potential ‘‘pullin
on the liquid membrane causes a spontaneous surface
sion, and uniform confinement, to appear. The calculat
presented here provides a microscopic justification for
phenomenological model previously introduced@5#, which
provides a unified description of both the static and dyna
spectrum of the RBC membrane fluctuations.

Positive tension acts to suppress the thermal fluctuati
as observed in the membrane of the RBC. The emerg
tension turns out to be negative for weak potentials~or large
periodicity!, signaling the appearance of intermediate-ran
order ~domains! in the membrane thermal fluctuations. Th
surprising result may be more quantitatively tested using
tificial vesicles or genetically manipulated RBC.

Our results point the way to an effective elastic descr
tion of composite membranes containing a bilayer and
attached cytoskeleton, such as in the RBC. This should h
implications not only for the fluctuation spectra, as we ha
discussed, but also for the overall shape and large-scale
formations~as in tight capillaries!.
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APPENDIX A

We give in this appendix the detailed calculations of t
expressions in Sec. II.

We begin with the exact result for the real-space heig
height correlation function of a free membrane, in the lim
of infinite membraneL→`,

^h~0!h~r !&.
kBT

k Fp2 r 2logS pL

r D1
L2

4p
1

p

2
r 2@G21#G ,

~A1!
01110
l-

s

x-
n
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’’
en-
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e
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t

whereG51.154 33 is the Euler-Gamma number.
Similarly, for a uniformly confined membrane

r→`:^h~0!h~r !&→0,

r→0:^h~0!h~r !&5
kBT

8Akg
, ~A2!

where ther→` limit shows that the confining effect screen
the long wavelength fluctuations, while the limitr→0 gives
a size-independent mean square displacement~9!.

We next give here a cut through the full solutionxq of Eq.
~10! of a two-dimensional checkerboard potential, along
qx axis ~i.e., qy50). We takeV15V0, so that the harmonic
potential vanishes at the minima, and average over the p
of the sinusoidal potential (dx ,dy):

xqx ,qy505 f $4@16G8k2116G2kqx
2V018G4k~kqx

41V0!

1~kqx
41V0!2#%/@4k3qx

12112k2qx
8V0111kqx

4V0
2

13V0
3164G8k2~kqx

41V0!18G2kqx
2V0~8kqx

4

17V0!14G4k~8k2qx
8116kqx

4V017V0
2!#.

~A3!

This complicated expression has the correctq→` depen-
dence, namelyxqx

→ f /(kqx
4). For the behavior at smallqx ,

we expandf /xqx
up to fourth order inqx , with the coeffi-

cients given in terms of the dimensionless parametee
[G4k/V0:

f

xqx

.ḡ1s̄qx
21k̄qx

4 ,

ḡ5V0

16e13

4~4e11!
,

s̄52G2k
~24e11!

~4e11!3
,

k̄5k
~4096e515120e412624e311200e2236e15!

4~4e11!5
.

~A4!

For the range of small harmonic potentialV0,4kG4, we
find a peak inxqx

~A3!, at the wave vector
q05
2GV0A24G4k1V0

S 2
163 84G20k51194 56G16k4V019472G12k3V0

214144G8k2V0
32152G4kV0

4115V0
5

~4G4k1V0!~16G4k13V0!
D 1/2. ~A5!
1-8
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We now give two simpler cases which we calculated. The first is a two-dimensional calculation of a single sin
harmonic potential in thex direction. Similar to Eq.~10!, we can write

@V11k~qx
21qy

2!2#xq1
V0

2
eidxG1q1

V0

2
e2 idx2G1q5 f ,

V0

2
e2 idxq1$V11k@~G1qx!

21qy
2#2%xG1q5 f ,

V0

2
eidxq1$V11k@~2G1qx!

21qy
2#2%x2G1q5 f . ~A6!

The shift of the sinusoidal function with respect to the origin~where the forcef is applied!, 0,d,2p, is again averaged over
giving the result forxq ~taking V15V0):

xq5 f $G8k214G6k2~2qx
21qy

2!1@k~qx
21qy

2!21V0#212G4k@k~3qx
422qx

2qy
213qy

4!1V0#

14G2k@2k~qx
22qy

2!~qx
21qy

2!21~3qx
21qy

2!V0#%Y F2
1

4
V0

2$k@~G1qx!
21qy

2#21V0%1$k@~G2qx!
21qy

2#21V0%

3S 2
1

4
V0

21@k~qx
21qy

2!21V0#$k@~G1qx!
21qy

2#21V0% D G . ~A7!

Finally, we also calculated the rather artificial case of a one-dimensional membrane with a single sinusoidal h
potential. This was useful for detailed comparison with the numerical solution, at higher resolution than was possible
two-dimensional cases described above. It is also useful for comparison with the case of a periodic array ofd-potentials~Sec.
IV !. The system of equations is given by

~V11kq4!xq1
V0

2
eidxG1q1

V0

2
e2 idx2G1q5 f ,

V0

2
e2 idxq1@V11k~G1q!4#xG1q5 f ,

V0

2
eidxq1@V11k~2G1q!4#x2G1q5 f . ~A8!

The solution ofxq is given by

xq52 f @G8k224G6k2q224G2kq2~kq423V1!1~kq41V1!212G4k~3kq41V1!#/@2G8k2~kq41V1!

28G6k2q2~kq41V1!1~kq41V1!~2k2q82V0
214kq4V112V1

2!1G4k~12k2q82V0
2116kq4V114V1

2!

12G2kq2~24k2q823V0
218kq4V1112V1

2!#. ~A9!

For the behavior at smallq, we expandf /xq up to fourth order inq:

ḡ5
2V1~kG41V1!2V0

2

2~kG41V1!
,

s̄5
G2kV0

2~25kG413V1!

~kG41V1!3
,

k̄5$k@2G20k5110G16k4V125G12k3~7V0
224V1

2!15G4kV1
2~213V0

212V1
2!1V1

3~V0
212V1

2!15G8k2V1~31V0
2

14V1
2!#%/2~kG41V1!. ~A10!

In the case that the harmonic potential vanishes at the minima (V15V0), we get simpler expressions in terms of th
dimensionless parametere,
011101-9
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ḡ5V0

2e11

2e12
,

s̄5G2k
~25e13!

~e11!3
,

k̄5k
~2e5110e4215e31175e2255e13!

2~e11!5
. ~A11!

APPENDIX B

We now perform a discrete Fourier transform of Eqs.~13!–~16! ~on the lattice sitesx5ma),

(
m

eiqma~gm2gm21!5gq~12eiqa!53aeqeiqa,

bq~12eiqa!52agqeiqa13a2eqeiqa,

aq~12eiqa!5abqeiqa1a2gqeiqa1a3eqeiqa,

eq~12eiqa!52
V

6k
aq1

f

6k
eiqa. ~B1!

Solving the system of equations~B1!, we find aq ,bq ,gq ,eq . In order to relate this to the Fourier transform ofxm(x) we
calculate the correlation functionxq ,

xq5(
m

E
(m21)a

ma

eiqxxm~x!dx5aq

~12eiqa!

iq
1bq

~12 iqa2eiqa!

q2
1gq

@2qa12i ~2eiqa!2 ia2q2#

q3

1eq

@26~12eiqa!16iaq13a2q22 ia3q3#

q4
. ~B2!
. J

l.

r-

ing
ate

ys.

s,

ll
.

i,

tt.
t,
@1# V. Bennett, Biochim. Biophys. Acta988, 107 ~1989!.
@2# A. Zilker, H. Engelhardt, and E. Sackmann, J. Phys. I48, 2139

~1987!; H. Strey, M. Peterson, and E. Sackmann, Biophys
69, 478 ~1995!.

@3# S. Tuvia, S. Levin, A. Bitler, and R. Korenstein, J. Cell Bio
141, 1551~1998!; S. Levin and R. Korenstein, Biophys. J.60,
733 ~1991!.

@4# M.A. Peterson, Phys. Rev. A45, 4116~1992!.
@5# N. Gov, A. Zilman, and S. Safran, Phys. Rev. Lett.90, 228101

~2003!.
@6# S. A. Safran,Statistical Thermodynamics of Surfaces, Inte

faces and Membranes, Frontiers in Physics Vol. 90~Addison-
Wesley, Reading, MA, 1994!.

@7# D.E. Discher and P. Carl, Cell. Mol. Biol. Lett.6, 593 ~2001!.
@8# C. Kittel, Introduction to Solid State Physics~Wiley, New

York, 1971!, Chap. 9.
@9# Note that similar surface tension of a bilayer due to coupl

with an adsorbed polymer layer, has been recently calcul
by T. Bickel and C.M. Marques, Eur. Phys. J. E9, 349~2002!.

@10# M. Laradji, Europhys. Lett.60, 594~2002!; C. Hiergeist and R.
Lipowsky, J. Phys. II6, 1465~1996!.

@11# D.R. Nelson and L. Peliti, J. Phys. I48, 1085~1987!.
01110
.

d

@12# A.G. Petrov, S.A. Swleznev, and A. Derzhanski, Acta Ph
Pol. A 55, 385 ~1979!.

@13# Micelles, Membranes, Microemulsions and Monolayers, edited
by W. M. Gelbart, A. Ben-Shaul, and D. Roux~Springer-
Verlag, New York, 1994!, Chaps. 7–9.

@14# M.J. Bowick and A. Travesset, Phys. Rep.344, 255 ~2001!.
@15# D. Discher, N. Mohandas, and E.A. Evans, Science266, 1032

~1994!; V. Heinrich, K. Ritchie, N. Mohandas, and E. Evan
Biophys. J.81, 1452~2001!.

@16# A. Zilker, H. Engelhardt, and E. Sackmann, J. Phys. I48, 2139
~1987!; S. Tuvia, S. Levin, A. Bitler, and R. Korenstein, J. Ce
Biol. 141, 1551~1998!; S. Levin and R. Korenstein, Biophys
J. 60, 733 ~1991!.

@17# A.F. Sikorski, B.H. Lorenz, A. Jezierski, and A.R. Dluzewsk
Acta Biochim. Pol.47, 565 ~2000!.

@18# See also C.F. Schmidt,et al., Science259, 952 ~1993!.
@19# J-B. Fournier, D. Lacoste, and E. Raphae¨l, Phys. Rev. Lett.~to

be published!, e-print cond-mat/0306736.
@20# M. Breidenich, R.R. Netz, and R. Lipowsky, Europhys. Le

49, 431 ~2000!; R. Lipowsky, H-G. Dobereiner, C. Hiergeis
and V. Indrani, Physica A249, 536 ~1998!.

@21# J.C-M. Lee and D.E. Discher, Biophys. J.81, 3178~2001!.
1-10


