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Pinning of fluid membranes by periodic harmonic potentials
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We analyze the thermal fluctuations of fluid membranes in the presence of periodic confining harmonic
potentials. This is a simple model of the biologically important, inhomogeneous attachment of the cytoskeleton
to the external, fluid membrane of the cell. We study a two-dimensional checkerboard potential as well as
one-dimensional, sinusoidal and periodic highly localiz&€flnction potentials. The membranes are described
by an energy functional that includes the curvature bending modulus of the membrane and the harmonic
external potential. We predict the magnitude of the membrane shape fluctuations. The sinusoidal potentials give
a spontaneous surface tension, and an emergent intermediate-range order in the membrane unduladions. The
function potentials induce a renormalization of the curvature modulus, with perfect pinning &iptitential
sites. After spatial averaging, tl&function potentials also give rise to an effective surface tension. Finally, we
compare these results with measurements of the fluctuations of the red-blood cell membrane, which shows the
effects of cytoskeleton attachment to the cellular membrane.

DOI: 10.1103/PhysRevE.69.011101 PACS nuner05.40—-a, 05.65+b

[. INTRODUCTION croscopic justification for the phenomenological model of
Ref.[5], and the confinement and surface tension parameters
The coupling between the elastic cytoskeleton and they and o, respectively. In the present work we predict these
fluid, lipid membrane is important for understanding the me-properties using a simple, well controlled model. Our aim
chanical properties and fluctuation spectrum of the cell. Théere, therefore, is not necessarily to improve on the quality
details of the cytoskeleton components and its geometry vargf the fit that was already obtained in RE8J, but to moti-
between cells, but there are general features that are commuate the use of the phenomenological parameters and to re-
to all: the fluid bilayer is attached to the cytoskeleton throughate them to the microscopic nature of the cytoskeleton-
specialized membrane proteins, confined to small attachmehilayer coupling, with particular focus on its inhomogeneous,
patches of~10-50 nm each, which can be relatively sparsesparse structure.
(~100 nm apart in the red-blood c¢RBC) [1], Fig. 1). The Our simplified model approximates the membrane-
cytoskeleton itself is usually much stiffer than the bilayer,cytoskeleton coupling as a confining harmonic potential,
and its solidlike structure gives it a shear modulus. The parplaced periodically along the membrane. The point of attach-
of the bilayer that is attached to the cytoskeleton is therefor&ent of the cytoskeletal spectrin network to the membrane is
highly confined with respect to fluctuations in the normal andthrough relatively short and rigid protein complexds (p.
lateral directions. It is interesting to see how this highly in-4.1, p. 55, etg It is the flexible spectrin filaments that pro-
homogeneous confinement affects the entire membrane, iide the smooth restoring force of the cytoskeleton on the
cluding those sections that are not directly attached to thgxembrane, which can be treated harmonically. The spectrin
cytoskeleton. molecules behave as linear entropic springs, with nonlinear-
In this paper we focus on the effects of the inhomoge-ty at large extensiong7], beyond the range of the thermal
neous confinement on the thermal fluctuations of the memfluctuations which we discuss he(Eig. 1). We study two
brane. These fluctuations have been measured in RB(}’s extreme modes of the lateral potential: a seriessdtinc-
and the effective membrane bending modutusas found to  tions, and a smooth sinusoidal function. For both cases we
vary dramatically as a function of the measurement wavdind analytical solutions for a one-dimensional membrane,
vector g. These observations, as well as the temporal spec-
trum [3], have presented a theoretical challenge since they glycophorin
appear to indicate that the bilayer behaves as if it is almost
detached from the underlying cytoskele{@n5]. In our pre- -
vious work [5] we have introduced a phenomenological
model that describes the cytoskeleton influence on the bi-
layer fluctuations in terms of a uniform harmonic confine-
ment (described by the parametg). At the same time, the
membrane appears to acquire a wavelength-dependent sur-g i 1 schematic illustration of the components of the RBC
face tension stiffness, in addition to its curvature modulusyemprane and cytoskeleton. Not shown are the additional connec-
[5,19]. This tension is much larger than estimated from thejons between the spectrin filamertigray ribbons and the lipid
finite size effecf6] o> «/R?. The aim of the present work is pjlayer (dashed filled rectangiethrough randomly placed ankryn
to calculate rigorously the effects of the nonuniform couplingcomplexes, which do not modify the network connectivity. The flat

of the cytoskeleton to the bilayeFig. 1), on the bilayer bilayer drawn is where the plane of zero displacenten0 is de-
thermal fluctuations. Using this calculation we obtain a mi-fined.

lipid bilayer
V7 S~
= protein 4.1

]

spectrin
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and for the sinusoid we also calculate the fluctuations for the a{h(r))
two-dimensional case. ([h(0)—=(h(0NIN(r) =(h(r)])=—keT —
The qualitative effects of the inhomogeneous confinement f=0

4

are the spontaneous appearance of a surface tension, which is
significantly larger than that given by the finite size effect,

and a uniform confinement term. For the case of a Weal% f the fieldbei i idel
sinusoidal confinement we also find enhanced correlations % e presence of the fieldbeing zero otherwiseIn a mean-

a characteristic length scale, due to “interference” effect of eld type .Of. apprqximation, this average is.the solution to the
neighboring confinement peaks. This occurs when the persi&n€rdy minimizatior(Euler-Lagranggequation
tence length of the membrane is larger than the harmonic H
otential periodicity. f_ 4 _
P We finglly comp{;tre the results of our model calculations (?—h—0:>V(I')X(r)+KV x(n)=t1a(r), ®
with the measurements of the fluctuations of the RBC mem-
brane. This membrane is attached to a two—dimensionahherex(r):<h(r)> is the mean-field value of the normal
(roughly) triangular cytoskeleton—the spectrin netwqgdy displacement of the membrane.
(Fig. 1). We find that our calculation can reproduce the effect This model therefore describes a membrane that is free to
of the uniform confinement and the appearance of an effedfuctuate around its average positibs-0 (Fig. 1). The har-
tive surface tension, as found in the experiments. Previouslyhonic confinement acts symmetrically on the membrane,
[5] these parameters were fitted individually from the experi-even though the physical cytoskeleton is attached to only one
mental data. Through the present calculation these paramgide of the lipid membrane. The asymmetry in the real mem-
eters can be related to the microscopic properties of the cybrane fluctuations becomes important only for large fluctua-
toskeleton; the periodicity of the connections and thetions where the membrane “hits” the spectrin filaments and
strength of the attachmengsee Sec. Il for details, Fig.)1 ~ makes the network break or buckle. These large deforma-
tions are beyond the range of this linear model. We further
note that one should average over the location of the ficti-
tious fieldf with respect to the harmonic potentials. The rea-
In this work we use the connection between thermal avson for this is that experiments on real membraBddack
erages and fluctuations, to calculate the effect of a periodithe resolution to distinguish between the bilayer regions that
confining potential on the shape fluctuations of a membraneare attached to the underlying cytoskeleton. Furthermore, the
We begin with the definition of the thermal average of themembranes are fluid, so that the cytoskeleton-bilayer cou-
normal displacemertt of the membrane at sitie[6], pling sites fluctuate in the plane of the membrane. Therefore
after calculating the correlation functions, we average over
1 the positions of the harmonic potentials, keeping the location
(hjy== f dAe HkeTh, | (1)  of the fieldf at the origin.
Z . S
The Fourier transform of the energy minimization equa-
tion is

here (h(r))=x(r) is the average membrane deviation in

Il. MODEL

where the partition functioZ=dAe ™'T anddA is the
phase-space integral. The Hamiltonidrof the membrane is

given by % Vexg-c+ kqxq="f. (6)
H= f f(Vzh)ZdrvL lf V(r—r")h(r)h(r")drdr’, Sinceyq is linear inf, we see from Eqi4) that x is simply
2 2 proportional to the Fourier transform of the two-point corre-

(2 Jation function. For a free membrand/{=0), we have
from Eq. (6) Xq=f/;<q4. Transforming this back to real

wherex is the bending modulus and(r —r’) is the external  (two-dimensional space we recover in the limit of a large
potential that represents the inhomogeneous coupling to théembrane of sizé (the complete result is in Appendix)A
cytoskeleton. For a locally acting, harmonic confining potenthe well-known self-correlatiogin the limit r—0)
tial, the second term in Eq2) becomes/(r)h(r)2. To cal-
culate the correlations, we can introduce a fictitious ffettol kgTL2
the free energy[6], which couples linearly to the normal (h(0)h(r—0))=
displacementlinear response approximatijprhis adds the
following term to the Hamiltonian

)

Aok’

For any external potential it is possible to solve ).
numerically. In order to obtain analytic expressions, we will
Hf=H—f fo(r)h(r)dr. (3y make a series of simplifications and approximations, later
comparing the results with the numerical solutions.
In the presence of a uniform external potentalwhere
Taking the derivatives with respect fo we find that the only Vs_q is nonzerd the solution takes the following form
height-height correlation ig6] :
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f

=—, (8)
v+ k(Q

Xq

where y=Vs_qo. Transforming Eq.8) back to real(two-
dimensiongl space we find for the self-correlation

kgT

8\ky

(h(0)h(0))= 9

which shows clearly the effect of uniform confinement, com-
pared to the free membrane res(j.

IIl. SINUSOIDAL POTENTIAL

The differential equatiol6), for a periodic potential char-
acterized by a single wave vectarG (G#0), gives an
infinite series of algebraic equatiof]. In analogy with the
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FIG. 2. Analytic expressions for the effectixéx (dashed ling

ol(«G?) (dotted lingd, y/V, (solid line), Eq. (A4), for the check-

erboard potential. The horizontal dashed line at 5/4 shows the limit

solution of the electronic wave equation in a periodic poten-f %7 for Vy— .
tial [8], we approximate the infinite series of algebraic equa-

tions (6) by keeping only the first-order terms @ Since we
expect(and later fing the amplitudey, to decay with in-
creasingg, we expand up to first order i, i.e.,G>q. This
amounts to the assumption that only the first-order scatterin

of the membrane undulations by the periodic potential con-

tributes significantly.

We now calculatey, for a two-dimensional checkerboard
potential of the form V(x,y)=V;+VycosGxX)cos@Gy),
where the sinusoidal harmonic potential of amplitidgis
superimposed on the uniform background of amplitiie
=V,. This potential should physically resemble the confin-
ing of the sparse network of the RBC cytoskeletsre the
following section. We therefore write

Vo ..
2., 2\2 0 Lidyqid,
[V1+K(qx+qy) ]Xq+ 4 e' ' yXG+qX,G+qy

Vo
AP

+ & €YY Gig, 0,
Vo
Sym—id

+ €% XGuq, Gra,

Vo . .
+—e ey _G+q. =T,
4 X G+ay., G+qy

V . )
7€ 1%y Vi k[ (G+ )2+ (GHay)

><XGJqu,GJrqy:.I:r

Vo

1€ %€yt Vit k[ (~ G+ )7+ (GHay)?T?)

XXfGJqu,GJrqy: f,

2& ey H{Vi+ k[(G+) %+ (~ G +,)2

g _
XXG+qX,—G+qy_f:

2 P MxH Vit k[(~ GF g+ (~G+ay) T

XX—G+qx,—G+qy=f' (10)

The shifts of the sinusoidal functions with respect to the
origin (where the forcd is applied 0<éy,d,<27 are av-
eraged over at the end of the calculation, since we are inter-
ested in the translationally invariant respofes procedure
does not make any qualitative changedfe solve Eqs(10)
exactly, that is,, for the two-dimensional checkerboard po-
tential. Since the resulting expressions are long, it is more
manageable to look at the behavior along one particular di-
rection. We give in Appendix A the result f()(rqx (a cut along
g,=0), while for simplicity we takeV,=V, [Eq. A3].

We next compare the solution of the analytical calculation
[Egs. (10) and (A3)] with a numerical solution of up to
fourth order(i.e., =4G). The average discrepancy 1s2%
for Vo=«G*, which grows to~10% for Vo=10«G*. The
analytical results are therefore less accurate for larger har-
monic potentials, or sma. Indeed, we assumed in deriving
Eq. (10) that G is large enough so that only the nearest
neighbors ing space need to be taken into account.

Expanding Eq(A3) up to fourth order ig we can define
the effective bending modulus, surface tensiowr, and the
uniform (“Helfrich” ) confinement parameter (A4), as the
coefficients ofg*, g2, andq®, respectively, in the expression
for Xq’l. We plot these quantities in Fig. 2 as functions of the
ratio Vo/G*«. Note the spontaneous appearance of a surface
tension term 9].
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We find that these quantiti€é4) have the following be- 05 -
havior in the limit of both weak é '=V,/G*«<1) and o018 <
strong (€ 1=V,/G*k>1) confinement: < 02 .
0.16
V2 % 0.1
— — J— 0.14
Vog—0:y—Vy, o—-— Z y K=K, S
8G°« B ore 05 1 15 2
s Vo/(kGH)
o 3\/0 o ) o § 01
V0—>oo:y—>—4 , 0—2kG%, Kk— 75 (11 < 00 |
&
For weak confinement, both the curvature modulus and the *%[ I
uniform confinementy are easily understood; however we  oo04} .
find a surprising effectiveegativesurface tension for weak 002
potentialsV,<4xG*. In the limit of strong confinement we ) |
find that the surface tension saturates to a positive value the o f——F————4—3—45 35—

is much larger than the tension due to finite size effects, with

a renormalized bending modulus and monotonically increas-

ing uniform confinementFig. 2). FIG. 3. The approximate analytic expression for the wave vector
In both cases it is the “pulling” effect of the inhomoge- do [EQ. (A5)] where a peak appears in the correlation funclign

Potential Vy/(kG4)

neous pinning that induces the appearance of the effectivier the two-dimensional checkerboard potential. In the inset we

surface tension. In the limi,— o, the clamping has a simi-

lar effect to positives that tends to reduce the fluctuations.

compare the analytic and numerical calculation for the one-
dimensional sinusoidal potential.

In the limit Vo— 0, there appears a characteristic wave vec-

tor g (see belowy, which is similar to the effect of buckling
that a negative tension would induce.

is approximately six times the periodicity of the harmonic
potential. Note from Eq(12) thatqq is given in terms of the

- . 4 - -
The renormalization of the bending modulus to a value ofS¢@ling funCt'On(f_f(VO/KG_ ), sinceG is the only length
5/4x (11) is somewhat similar to the effects calculated for SC@€, and/o/xG™ s the ratio of the two energy scales in the

membranes with grafted polymers and bruspies, where

factors of 3/2—5/2 have been found. The similarity is clear,

model.
For small harmonic potentials, the domain wave vector is

. . . 4 . .
as the grafted molecules apply a smooth entropic constrairf'€@r in the potentialAS) qo— G(Vo/4G"«) (Fig. 3). This
on the membrane fluctuations, similar to the harmonic potenlin€ar regime bears some resemblance to the intermediate-

tial that we are applying here.
The effective negative surface tension for sm#l

range order in crystallinéor tetheregl membranes above the
disclination melting temperatufd1]. In such tethered mem-

(Fig. 2) means that there is a peak in the correlation functiorPr@nes, there is crystalline order over length scales smaller
Xq (A3), at some finite wave vectay,. The appearance of a thanr~ «/ub, wherey is the shear modulus of the mem-
typical wavevector, even after averaging over the sinusoiddprane andb is the length scale of a dislocation. In other

potential position, is surprising. Using the expansionygf
up to fourth order ing, we find an approximate expression
for this wavevectoqg (Eg. (A5) in Appendix A

G(Vol4G*k),  Vy—0
— V.—V 1/2
do (Vc—Vo) V—Vy—O, (12)
V34kG

whereV,=4«G*. In Fig. 3 we plot this function. There is no
real solution fonVy>V_, which corresponds to the regime of
positive surface tensioa (Fig. 2). For c>0 the correlation
function decreases monotonically @sncreases from zero.

words, tethered membranes have enhanced correlations on
length scales less thar, behaving as an isotropic liquid at
longer length scales. If the shear modulus of such a mem-
brane is written in terms of our confining harmonic potential
(see the following sectionas u~V,/G?, andb~1/G, we
recoverr .=1/q,. This is the length scale at which the bend-
ing (of the bilayey and stretchingof the tethers energies
balance each other in such membranes. Similarly in our
model the periodic potential induces stretching of the mem-
brane, which can be balanced by the bending energy for all
r<r.. The balancing of the two opposing forces of stretch-
ing and bending, at the wave vectqy, allows the mem-
brane fluctuationgsand correlationsto be enhanced there.

The appearance of a peak in the displacement correlation Experimental evidence for enhanced membrane deforma-

function (4), at a finite wave vectog,, means that there is a

tions on such length scales is seen in freeze fracture electron

characteristic wavelength for the thermal fluctuations. A di-micrograph of a RBC membrand2]. Small undulations
vergence in the correlation function would correspond towith wavelengths of~100 nm are seen, which is of the or-
long-range order at that wavelength, while a finite peak corder of the distance between neighboring cytoskeleton-bilayer
responds to domains with an intermediate-range order, i.ecoupling sites, corresponding to oGr A phase with a simi-

enhanced correlations at the lengthscalg,.1in our case,

lar finite (nondivergent peak in the correlations at a finite

the domain structure corresponds to regions with varyingvave vector, but with no long-range order or instability
amplitude of thermal fluctuations. We see in Fig. 3 that thelwhich are both associated with divergent correlatipis

wavelength of these “fluctuations domains,” at its minimum,

seen in microemulsion§l3]. In these systems a random
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sponge phase exhibits a characteristic length scale for th
size of the water-oil domains. Negative surface tension in  1.8¢
general can lead to a divergence in the amplitude of therma
fluctuations at some. In our system the negative surface
tension does not lead to a real instability since in the acces
sible region ofg space, there are always the positive curva- = 1.2t
ture kgq* and confinementy terms in the Hamiltoniar(2),
which keep the membrane area fluctuations finite. _
We thus find an interplay between three length scales
characterized byy,, G, and q.=(y/«)Y%. The disappear-
ance of the spontaneous structure in the fluctuation spectrun | ]
for large Vo, can be qualitatively understood as follows. | 7
WhenV, is large enough, the persistence length of the mem- 1
brane~ 1/q. is smaller than the harmonic potential period-  0.0=
icity. In this case, the confining effect of each harmonic po- > . .
tential peak is effectively decoupled from its neighbor, and
there is no emergent intermediate-range order, with lengtt. Potential Vq(J/m*) x 10
scale 1¢jp. In other words, the/g—o limit “breaks” the

membrane, so that no significant coherence remains on tt}e FIG. 4. The CaI.CUIated EIaSEC paramefefg' ando as E."func'
scale ofG— L. 1on of the potentialV,, for G=1/380 nn1~. We normalize the

._parameters by the measured valygs, key, ando.,, respectively,
We can also compare our results to those of the crumplm&,r the first RBC of Table I. It is clear that both and '« approxi-

transitiqn in phantom crystallineor tethere?’ membrapes mately agree with the measured value¥ gt 16% J/nf', while o at
[14], without self-avoidance. In these studies a continuoUgnost approaches o,/3.

transition was found from a flat to a crumpled phase, as the

surface tension changes from negative to positive. We fin@re further attached to the membrane at random sites along
similarly that as the surface tension changes from negative t$eir length by ankryn molecules. The spectrins behave as
positive, the wave vectay, at which there is a peak in the entropic sprlnags and give the cytoskeleton a shear modulus
correlation function vanishes. The “crumpled” phase in ourOf ©~6x10"° J/nf [15].

case corresponds tg=0, which means that the membrane We have previously5] analyzed the measured spectrum

conforms to the applied harmonic potential, after averaging®f the thermal fluctuations of the RBC membrdié], and
: mf und phenomenologically that it can be described using the

piree parameters,o,y as in Eg.(A3). In the present work
dve compare these phenomenological parameters with the re-

) LD b e

——

lized x,6

0.8 \\ —

rmal
4
\
A

0.6

No
o

where the tethering is strong enough to cause crumpling. T

“flat” phase corresponds in our case to the regime where th ) . : o
persistence length of the membrane is longer than the perpdlts of our microscopic modélll), which highlights the

odicity of the applied potential, so that an intermediate-rang@;fml:_ts_dOf the it?homo_lgre]neouhs chouplingi of tpe cytoslée:et?nhto
order at a finitegy>0 appears. We find that within our ap- the lipid membrane. Through the results of our model of the

proximation(12) qo= Vo asVoe—V, (Fig. 3, as was found preceding section, these parameters, namgly,«, are

for the phantom membranes, when the critical point of theShOWn o be related to the physical properties of the cytosk-

. L eleton, namelyG, V.
crumpling transition is approached from the flat phek8. We find the values o3,V which give 7=y, and x

=Koy~ 2% 10 2% J (Fig. 4), and are given in Table(for the
IV. CYTOSKELETON OF THE RBC two extreme examples of measured RBCHNote that the
approach to the asymptotic value=5«/4 is very slow
We now wish to compare the results of our model to the(Figs. 2 and 4

experimentally well studied case of the RBEig. 1). The We find in both cases that the predicted surface tension
cytoskeleton of the RBC is a two-dimensioriedughly) tri- is smaller than the measured valug, by a factor of~3
angular network made up of flexible spectrin molecules, at{Table | and Fig. 4 The calculated surface tension is close to
tached at their ends to actin complexes, and through them tine asymptotic value of strong confinement- 2«G? (11).
the lipid bilayer[1]. The length of the spectrin connections Note also that this value is /30, but is still much larger
of the network is~100 nm, while the size of the regions (two orders of magnitudethan the surface tension arising
coupling the cytoskeleton to the bilayer-isl0 nm[1], thus  from area conservation of the RB(5]: oy=«/R?>~1
forming a sparsédilute) confinementFig. 1). The spectrins X102 J/n? (takingR~4 um for the RBC radius The fac-

TABLE |. Values of G, Vy which give y= y,, and k= kg,~2x10 20 J.

VX 10° (J/nfh G(nm™ Y e 1=V, /kG* Glq, YexX 107 (I/nf) TexX 1077 (/)

1 1/380 104 2.5 7.5 7
0.13 1/650 116 3 1 2.8
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bending moduIUSqull(q“xq), using EqA3) with V;

=V,. We find that both the two-dimensional model with a
checkerboard potential and the one-dimensional sinusoidal
potential can reproduce fairly well the log behavior, in-
cluding the appearance of the relatively large effective sur-
face tension. The measured data, though, show a more abrupt
change around the crossover wave vegtotvertical dashed
lines in Fig. 5 [18,19. This is likely due to the more discrete
nature of the cytoskeleton-bilayer coupling, which is not cap-
tured by the smooth sinusoidal potential. The comparison
between the one-dimensional and two-dimensional calcula-
tion emphasizes the dependence of the emergent elastic pa-
rametersk,o, and y on the details of the symmetry and
geometry of the harmonic potential, which in the RBC has a
mixed hexagonal-pentagonal symmetry. Note that the impor-
tance of the induced surface tension is apparent only for
wave vectors smaller than the crossogetq,. (Inset of Fig.

5). We see again that the calculated surface tensios too

FIG. 5. Comparison of the calculateq= 1/(q4Xq) for the two-

. . ) . small (~ 06, /3).
dimensional checkerboard potential, Eqg.(A3) (taking € .
V,=Vy)—solid lines; a one-dimensional sinusoidal potenfad. Although the coupling of the cytoskeleton to the mem-

(A9)]—dash-dot lines and measurésymbolg for the two RBC's brane oceurs at d'S_“_”Ct siteFig. 1), th_e checkerboard
of Table I. The two fitting parameters a@andV,. The simple fit model gives a_ SUfpf'S'”g'Y goqd approximation of the real
without surface tensiofonly average confinemeny) is shown as ~ Cytoskeleton-bilayer coupling in the RBC, because of the
dashed lines, while the wave vectpr~ (/x)Y*is indicated by the ~ fluctuations of these coupling points. Looking at a schematic
vertical dashed lines. The inset shows the data for one of the cellficture of the membrane, we can see that the cytoskeleton
so that the importance of the large effective surface tensiom for Strongly confines the bilayer over an actin patch~-80 nm
=q. is apparant. The calculated surface tensiofis seen to be in diameter(Fig. 1). The spectrin molecules, which form the
smaller than the experimentally measured vaiye (dotted ling. links of the cytoskeleton network, emanate from such a
patch. The bilayer-spectrin separation therefore increases ra-

tor of 3 discrepancy can be attributed to the fact that wedially as one moves away from the connecting patch, with a
chose a particularly simple model with a single sine wavegradual consequent decrease in the confining stref@gih
modulation, withVo=V;. Note in Table | that the measure- In addition, the position of the connecting patch thermally
ments on two different cells also differ by about a factor of 3.fluctuates in the liquid bilay€21], with an observed ampli-

The significant result is that the cytoskeleton-induced tentude of ~20 nm. This further smooths the effective confine-
sion is two orders of magnitude larger than the tension due teent of the bilayer by the cytoskeleton, and explains why the
area conservation. The surface tension imposed by the pegffective periodicity we find by fitting to our modgTable ]
odic potential is therefore distinct from both the cytoskeletonis larger than the static periodicity.
shear strength and the area conservation condition.

We now relate the values & andV, to the microscopic V. PERIODIC & POTENTIALS
structure of the RBC cytoskeleton. The calculated periodicity ] . . ] )
of the sinusoidal potential in Table | is of the order of the N this section we examine the case of a highly localized
observed average distance between cytoskeleton-bilayer cofytoskeleton-bilayer coupling, in the form of a periodic se-
nection siteg2] (~ 150 nm). Additionally, the values of the €S of 6 functl|ons. _Th|s co_rre_sponds to the opposite I|m!t of
peak confining harmonic potential exerted by the cytoskelih? smooth'smusmdal variation e.x:?\mmed apove. Physically
eton Vo~ 100kG* can be related to the shear strength perth's scenario corresponds to_ a rigid and stiff cytoskeleton,
unit area of the cytoskeletom: Vo~ uG2=(0.14-0.4) highly separated from the bilayer, except at the points of
X 10 (J/nf). The strength of the confining potential that the €oNtact. , _ o
cytoskeleton exerts on the lipid membrane at the coupling 10 Obtain analytic solutions we limit ourselves to the one-
site is related to the cytoskeleton stiffness. This is so becaugmenSIonal_Case., Wthh'Wt_e compare with a_S|m|Iar calcula-
it is only the local shape changes of the cytoskeleton thalion of the sinusoidal variatiofend of Appendix A. In one
provide a restoring force to the fluctuations of the lipid mem-dimension Eq(5) becomes
brane, above and beyond its intrinsic bending moduwus

. . . 4
(Fig. 1). The relatively large difference between the two cells o B 3" x(X)
above can be due to natural variations in the structural prop- V% [6(x=a(m=1))+8(x—am)Jx(x) + « x4
erties of the cytoskeleton. For example, the density of ankryn
may vary[17], and with it the entropic stiffness of the spec- =f8(x) (13

trin network.
We now compare the behavior at all wave vectors. In Figwith the § functions at positionsk=am and strengthV in
5 we compare the observed and the calculated effectivenits of J/nf). We parametrize the solution for each section
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of coordinatea(m— 1)<x=<am by the exact solution of Eq. L

T
x10°

(13) in the regions between each of tAgunctions: a5l ! T ]
: 0.9 '
o o
Xm(X) = am+ BmX + YrX' 2+ €nX' 3, (14) ? o8t g %‘; E 1
Xe] 5 - !
wherex’ =x—(m—1)a. We then write the boundary condi- & °| 298 \ 1
tions for each section, which are the continuity conditions for§ sl 2 gi i
the functionsy, dx/dx, % x/ 9x?: c °
O osf 5 03 J
_ g 8 oz
Ym™ Ym—1=3A€m_1, D o04f 0.1 E
ﬁ _B 1:2a')/ l+ 332&' 1 g 03k OO 5 10 15 20 25 30 35 40 ~4-15 50 |
m m— m— m—1»

Wavevector g/G
am_amfl:algmfl'*'az?’mfldl'agfmfl- (15
The fourth equation we need is given by the integration of

Eq. (13 % o5 1 15 2 25 & 35 4 45 5
Wavevector q/G

V f
ém_ém—1:_6_am+6_5m,1' (16) ) ) o

K K FIG. 6. The calculated correlation functiggn (solid line) for a
. one-dimensional periodic array of harmoridunctions[Eq. (17)]
where the last term accounts for the applied force at th%nd for the position-averaged caiq. (19), dashed fing In the

origin. - - -
. . inset we plot these functions for larggwvalues, compared with the
We now perform a discrete Fourier transform of these P 9% P

i ) approximate expressioil8) (dotted ling. Note that the spatial av-
equations, and solve E(B1), to find aq,B8q.vq,€q (APPEN-  eraging of the potential removes the oscillations.
dix B). Using the solution of EqB1) in Eq. (B2) (Appendix
B) we finally find

and amounts to a uniform confinement combined with a

Xo= f renormalization of the curvature bending modulus. Note the
kgt absence of a surface tension term in this case, in contrast to
the sinusoidal potentialAl1l). As expected, the infinitely
16a%q*V[2+cogaq)]sin(ag/2)* strong coupling at the positions of tlé&functions introduces
Y= 3|1+ e ' 17 zero response at the corresponding wave veaer@mn/a
(n=0,1,2...), where y—» (Fig. 6).
which for smallq has the form To take into account the averaging over the relative posi-
tion of the §-function harmonic potentials and the origin, the
_ !+ aS_V 4 18 potentialV in Eq. (17) gets multiplied by a phase factet™,
YT a 720q with —a<é<a. Integrating over this phase,
f {3k|—1+€'298—aVv[8—9 cogaq) + cog 3aq) |}tan(aq/2)
Xq:—5< aq+2 arctarii 3 3 . 2 ) (19
2akq 3k|—1+€'29°+16a°V[2+cogaq)]sin(ag/2)
|
and expanding in the limit of small wavevector, pressions for the surface tension in the case of a sinusoidal
potential[Eq. (11)] andos. In particular, there is no depen-
fo-lo ! ﬂ V_a3 4 20 dence on the curvature bending modukum the latter case.
q a 6 Tkt 48 q- (20) The dependence on the confining potentids quadratic in

the former, while it is linear in the case of periodigpoten-
We find that the averaging process leads to the appearandals.

of a positive surface tension terary=aV/6, while the nodes As we discussed in the end of the preceding section, the
in the correlation function disappedFig. 6. Comparing actual confining potential in the RBC is most probably
with the previous sections, we find that,~ u(aG)?/6, so  smooth, rather than a-function-like potential. This is de-
that the calculated surface tension can be related to the shespite the fact that the cytoskeleton is strongly attached to the
modulus of the cytoskeletop, but is smaller by about an membrane at confined sitéEig. 1). The position of these
order of magnitude. Notice the difference between the expatches thermally fluctuates in the liquid bilayén], with
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an observed amplitude of 20 nm. This smooths the effec- whereI'=1.15433 is the Euler-Gamma number.
tive confinement interaction of the bilayer and the cytoskel- ~ Similarly, for a uniformly confined membrane
eton.
r—o:(h(0)h(r))—0,
VI. CONCLUSIONS

In this work we described analytical and numerical results r—0:(h(0)h(r))= keT , (A2)
for models of inhomogeneougeriodig harmonic confine- 8Ky

ments of fluid membranes. These models are applied to ex-

periments that are sensitive to the physical coupling betweefhere ther — = limit shows that the confining effect screens
the cellular cytoskeleton and outer lipid membrane. Our rethe long wavelength fluctuations, while the limit-0 gives
sults show that a smooth inhomogeneous potential “pulling”a size-independent mean square displacerf@nt

O-n the ||qU|d .membran-e causes a Spontaneous Surface-ten' We next give here a cut through the full SOlUti/QE] of Eq
sion, and uniform confinement, to appear. The calculatio1() of a two-dimensional checkerboard potential, along the
presented here provides a microscopic justification for they axis (i.e.,q,=0). We takeV;=V,, so that the harmonic

phenomenological model previously introducks], which  potential vanishes at the minima, and average over the phase
provides a unified description of both the static and dynamig¢ the sinusoidal potentiald, , 8,):

spectrum of the RBC membrane fluctuations.

Positive tension acts to suppress the thermal fluctuations, _ 8,2 2, 2 4 4
as observed in the membrane of the RBC. The emergerit®%~° HA[16G K"+ 1667k Vo + BG k(K0 + Vo)
tension turns out to be negative for weak potentialslarge + (kG Vo) [ 430 2+ 126208V o+ 11k V2
periodicity), signaling the appearance of intermediate-range
order (domaing in the membrane thermal fluctuations. This +3V3+64G8Kk%(kqi+ Vo) +8G2kq2Vo(8kqy
surprising result may be more quantitatively tested using ar- . ) g 4 )
tificial vesicles or genetically manipulated RBC. +7Vo) +4G"k(8k°q,+ 16xq, Vo +7V() ].

Our results point the way to an effective elastic descrip- (A3)

tion of composite membranes containing a bilayer and an
attached cytoskeleton, such as in the RBC. This should havgy,iq complicated expression has the corrgets depen-

implications not only for the fluctuation spectra, as we haved 4 :
: ence, namel f/ . For the behavior at smatj,,
discussed, but also for the overall shape and large-scale de- ¥a, (<0y) al

formations(as in tight capillaries we expandf/)(qx up to fourth order ing,, with the coeffi-
cients given in terms of the dimensionless parameter
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APPENDIX A - (—4et1)

We give in this appendix the detailed calculations of the 7= x (4e+1)3'

expressions in Sec. Il.
We begin with the exact result for the real-space height-

5 4 3 2_
height correlation function of a free membrane, in the limit 7:,((40966 512067+ 26247+ 1200 36€+5),

of infinite membrand. — o, 4(4e+1)°

(A4)

h(O)h kgT |7 2 L L2 = )
{h(0) (r)>_T Z o =)+ 7 o1 For the range of small harmonic potentisj<4xG*, we

(A1) find a peak in)(qX (A3), at the wave vector
|
B 2GVo\—4G*k+V, 5)
o ( 163 8452%5 + 194 565164V o + 9472623V 2+ 414468 k23 — 15264 kVE+ 15V | %
(4G*k+ V() (16G*k+3V,)
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We now give two simpler cases which we calculated. The first is a two-dimensional calculation of a single sinusoidal
harmonic potential in the direction. Similar to Eq(10), we can write

Vo Vo
[Vitk(a5+09)%Ixg+ 5 €°Xeiqt 5 € X-ciq=T,

Vo .
?e I5)((1"‘{\/14_ K[(G+qx)2+qs]2}XG+q: f,

Vo .
€ H{V1+ K[~ G a0 Gf 1y g q=1. (A6)

The shift of the sinusoidal function with respect to the origimere the forcd is applied, 0< <2, is again averaged over,
giving the result fory, (takingV,=Vo):

Xq= H{G®k?+4G8k*(— a5+ qf) + [ (a5 +a)*+ Vol?+ 2G [ k(3 — 20507+ 30)) + Vo]
1
+4G2[ — r(a— ap) (g +ay)*+ (3a5+a)) Vol} / {— 7 VolK[(G+ a0+ ay]?+ Vol +{x[(G— a0+ ay]*+ Vo}

1
x| = 2 Vet Ir(a+a))?+ Vol{x[(G+ )+ a7]*+ Vo)

Finally, we also calculated the rather artificial case of a one-dimensional membrane with a single sinusoidal harmonic
potential. This was useful for detailed comparison with the numerical solution, at higher resolution than was possible for the
two-dimensional cases described above. It is also useful for comparison with the case of a periodic &pateafials(Sec.

IV). The system of equations is given by

. (A7)

Vo . Vo .
(V1+Kq4)Xq+?e|5XG+q+?e I5)(—G+q:f’

Vo —is 4
e XqT[Vitk(G+a)*Ixc+q=T,

Vo
2

e xq+[Vit k(=G+a)*Ix_g+q=T. (A8)
The solution ofy, is given by
Xq=2f[G®k?—4G®k?g*— 4G?kq*(kq* —3V) + (kq*+V1)?+ 2G*k(3kq*+ V1) /[ 2G®k*(kq* + V)
—8GPKk?Q(kq*+ V1) + (kq*+ V1) (26208 — V3 + 4kq*V, + 2V3) + G4 k(12«28 — V3 + 16kq*V, + 4V7)
+2G%kq%(— 4k2q%— 3V2+8kq*V, +12V)]. (A9)
For the behavior at smatj, we expandf/x, up to fourth order ing:
_ 2Vi(kG*+V)—V3
YT (kG V)

_ G2kV3(—5kG*+3V,)
o= ’

(kG4+V,)3

*={Kk[2G?%°+ 10G0x*V, — 5G2%3(7TV5— 4V3) + 5G4k V3(— 13V3+ 2V2) + V3(V3+2V2) + 5G8«2V, (31V3
+4VH M2 kG*+ V). (A10)

In the case that the harmonic potential vanishes at the minWhaV,), we get simpler expressions in terms of the
dimensionless parameter
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Sy 2e+1
Yo V02e+ 2"
— ., (=5€+3)
g = K——
(e+1)3
_ (2€°+10e*—15€+ 175¢°— 55¢ + 3)
K=K . (Al1)
2(e+1)°
APPENDIX B
We now perform a discrete Fourier transform of E3)—(16) (on the lattice sitex=ma),
E eiqma( Ym™ Ym-1)= 7q(1_ eiqa) = 3a6qeiqa’
m
Bq(1—e'9%) =2ay,e'9%+3a%,e'9?,
ag(1-e'9%)=ape'%+a?ye'%+a%e,e'?,
‘ \% f
€q(1—-€'9%)=— —a + —e'%% (B1)

6« 6k

Solving the system of equatioriB1), we find aq,B4,7v4,€q- In order to relate this to the Fourier transform xf(x) we
calculate the correlation functiog, ,

(1—€93) (1-iga—e'9?) [2qa+2i(—e'9%) —ia%g?]
- + q + Yq
9 9 q°
[—6(1—e9%) +6iaq+3a%g’>—ia’q®]

ma .
Xa=2 f /Py m(X) dX= arq
m (m-1)a
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